\(\int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx\) [165]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 117 \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {36 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

-36/5*a^3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4*a^3*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*a^3*sin(d*x+c)/d/cos(d*x
+c)^(5/2)+2*a^3*sin(d*x+c)/d/cos(d*x+c)^(3/2)+36/5*a^3*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2836, 2716, 2719, 2720} \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {4 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {36 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[In]

Int[(a + a*Cos[c + d*x])^3/Cos[c + d*x]^(7/2),x]

[Out]

(-36*a^3*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a^3*EllipticF[(c + d*x)/2, 2])/d + (2*a^3*Sin[c + d*x])/(5*d*Co
s[c + d*x]^(5/2)) + (2*a^3*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)) + (36*a^3*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]
])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2836

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a^3}{\cos ^{\frac {7}{2}}(c+d x)}+\frac {3 a^3}{\cos ^{\frac {5}{2}}(c+d x)}+\frac {3 a^3}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {a^3}{\sqrt {\cos (c+d x)}}\right ) \, dx \\ & = a^3 \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x)} \, dx+a^3 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+\left (3 a^3\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx+\left (3 a^3\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {6 a^3 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {1}{5} \left (3 a^3\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+a^3 \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\left (3 a^3\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {6 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {4 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}-\frac {1}{5} \left (3 a^3\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {36 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a^3 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {36 a^3 \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.44 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.18 \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a^3 \csc (c+d x) \left (\operatorname {Hypergeometric2F1}\left (-\frac {5}{4},\frac {1}{2},-\frac {1}{4},\cos ^2(c+d x)\right )+5 \cos (c+d x) \left (\operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},\cos ^2(c+d x)\right )+\cos (c+d x) \left (3 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},\cos ^2(c+d x)\right )-\cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right )\right )\right )\right ) \sqrt {\sin ^2(c+d x)}}{5 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[(a + a*Cos[c + d*x])^3/Cos[c + d*x]^(7/2),x]

[Out]

(2*a^3*Csc[c + d*x]*(Hypergeometric2F1[-5/4, 1/2, -1/4, Cos[c + d*x]^2] + 5*Cos[c + d*x]*(Hypergeometric2F1[-3
/4, 1/2, 1/4, Cos[c + d*x]^2] + Cos[c + d*x]*(3*Hypergeometric2F1[-1/4, 1/2, 3/4, Cos[c + d*x]^2] - Cos[c + d*
x]*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2])))*Sqrt[Sin[c + d*x]^2])/(5*d*Cos[c + d*x]^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(385\) vs. \(2(157)=314\).

Time = 7.48 (sec) , antiderivative size = 386, normalized size of antiderivative = 3.30

method result size
default \(-\frac {16 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, a^{3} \left (\frac {7 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{10 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{16 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}-\frac {9 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{10 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}-\frac {9 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{20 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{160 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{3}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(386\)
parts \(\text {Expression too large to display}\) \(781\)

[In]

int((a+cos(d*x+c)*a)^3/cos(d*x+c)^(7/2),x,method=_RETURNVERBOSE)

[Out]

-16*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(7/10*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1
/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2))-1/16*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^
2-9/10*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)-9/20*
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^
(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-1/160*cos(1/2*d*x+1/2*c)*(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3)/sin(1/2*d*x+1/2*c)/(2*cos(1/
2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.71 \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} a^{3} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} a^{3} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 i \, \sqrt {2} a^{3} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 i \, \sqrt {2} a^{3} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (18 \, a^{3} \cos \left (d x + c\right )^{2} + 5 \, a^{3} \cos \left (d x + c\right ) + a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{5 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

-2/5*(5*I*sqrt(2)*a^3*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*I*sqrt(2)*a
^3*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 9*I*sqrt(2)*a^3*cos(d*x + c)^3*w
eierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 9*I*sqrt(2)*a^3*cos(d*x + c
)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (18*a^3*cos(d*x + c)^2
 + 5*a^3*cos(d*x + c) + a^3)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**3/cos(d*x+c)**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^3/cos(d*x + c)^(7/2), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^3/cos(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^3/cos(d*x + c)^(7/2), x)

Mupad [B] (verification not implemented)

Time = 15.24 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.32 \[ \int \frac {(a+a \cos (c+d x))^3}{\cos ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,a^3\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{5\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int((a + a*cos(c + d*x))^3/cos(c + d*x)^(7/2),x)

[Out]

(2*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*a^3*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*co
s(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*a^3*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))/(d
*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2)) + (2*a^3*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2)
)/(5*d*cos(c + d*x)^(5/2)*(sin(c + d*x)^2)^(1/2))